1.4 GENETIC CODE

The genetic code is a set of rules by which the nucleotide sequence of DNA or Rolling and sequence of proteins, the fundamental component The genetic code is a set of fales of fales of proteins, the fundamental components of stranslated into the amino acid sequence of proteins, the fundamental components of stranslated into the amino acid sequence of life, guiding the synthesis of proteins from is translated into the amino actu sequences of life, guiding the synthesis of proteins from genetic living cells. It is a universal language of life, guiding the synthesis of proteins from genetic living cells. It is a universal language of life, guiding the synthesis of proteins from genetic living cells. It is a universal language of life, guiding the synthesis of proteins from genetic living cells. living cells. It is a universal language of the most significant scientific achievement and function of every organism on Earth. The part material and thereby directing the structure and function of every organism on Earth. The part material and thereby directing the structure and function of every organism on Earth. The part material and thereby directing the structure and function of every organism on Earth. The part material and thereby directing the structure and function of every organism on Earth. The part material and thereby directing the structure and function of every organism on Earth. The part material and thereby directing the structure and function of every organism on Earth. The part material and thereby directing the structure and function of every organism on Earth. material and thereby directing the structure of the most significant scientific achievements of the deciphering the genetic code was one of the most significant scientific achievements of the deciphering the genetic code was one of the most significant scientific achievements of the most scien 20th century. Here's a chronological outline of key discoveries:

- 1953 Watson and Crick proposed the double helix model of DNA, establishing the genetic information is stored in the sequence of nitrogenous bases.
- 1957 George Gamow, a physicist, proposed that combinations of three nucleotides triplet code) could encode the 20 standard amino acids. Although his specific model was incorrect, it inspired important research.
- 1961 Crick, Brenner, Barnett, and Watts-Tobin demonstrated experimentally that the genetic code is read in non-overlapping triplets. This was achieved using frameshift mutations in bacteriophage experiments.

- 1961 Marshall Nirenberg and Heinrich Matthaei conducted the famous poly-U experiment, synthesizing artificial mRNA composed entirely of uracil (UUU) and showing that it coded for the amino acid phenylalanine. This was the first direct assignment of a codon to an amino acid.
- 1960s Nirenberg, Har Gobind Khorana, and others systematically determined the
 codon assignments for all 20 amino acids using synthetic mRNA sequences and cell-free
 translation systems.
- 1968 Nirenberg, Khorana, and Holley were awarded the Nobel Prize for their contributions to understanding the genetic code and protein synthesis.

Key Features of the Genetic Code

The genetic code has several fundamental characteristics that ensure its reliability and efficiency:

- 1. Triplet Nature: Each amino acid is encoded by a codon consisting of three nucleotides. For example, AUG codes for methionine.
- 2. Degeneracy (Redundancy): The code is degenerate, meaning that most amino acids are specified by more than one codon. For instance, leucine is encoded by six different codons (e.g., CUU, CUA, CUG).
- 3. Non-Overlapping: The code is read in non-overlapping triplets, with each nucleotide being part of only one codon in a given reading frame.

		Second letter					
		U	С	Α	G		
First letter	U	UUU } Phe UUA } Leu UUG	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAA GIn CAG	CGU CGC CGA CGG	UCAG	Third letter
	A	AUU AUC AUA Net	ACU ACC ACA ACG	AAU Asn AAC Lys AAG Lys	AGU Ser AGC AGA Arg	UCAG	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	UCAG	

Fig. 1.7. Genetic Code Table.

- **4. Comma-less:** Codons are read **continuously**, with no punctuation or spacing between them once the start codon is recognized.
- **5. Universal:** With few rare exceptions (e.g., in mitochondrial DNA or some protozoa), the genetic code is **virtually universal** across all organisms, from bacteria to humans—suggesting a **common evolutionary origin**.

6. Specificity: Each codon always specifies the same amino acid, ensuring the fidelity of protein synthesis.

7. Start and Stop Codons:

- The start codon (AUG) initiates translation and codes for methionine.
- There are three stop codons—UAA, UAG, and UGA—which signal the termination of translation and do not encode any amino acid.

The genetic code holds immense scientific and biological significance as it lies at the core of the central dogma of molecular biology—DNA is transcribed into RNA, which is then translated into protein. Understanding this code has paved the way for transformative advances in genetic engineering, synthetic biology, gene therapy, and molecular diagnostics One of its key features, degeneracy, offers mutational robustness, allowing certain mutations particularly in the third base of a codon—to be silent or synonymous, thus minimizing harmful effects. The near universality of the genetic code across species enables the creation of transgenic organisms, where genes from one species can function in another, exemplified by the production of human insulin in bacteria. Scientists have even expanded the genetic code, introducing non-natural amino acids through engineered codons, thereby broadening the functional diversity of proteins. Additionally, natural variations in mitochondrial genomes and some ciliates reveal evolutionary adaptations to the code. The phenomenon of codon usage bias, where certain codons are preferred over others for the same amino acid, also plays crucial role in regulating gene expression and translation efficiency across different organisms